Ma

 Mathematics testsKEY STAGE
3
ALL TIERS

2005

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 2 at all tiers. The paper 1 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 11 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a $U A M$ element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided at the centre page of this booklet.

The 2005 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating to marking of questions that involve money, time, algebra, coordinates, negative numbers or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...

The pupil's response does not match closely any of the examples given.	Markers should use their judgement in deciding whether the response corresponds with the statement of requirements given in the Correct response column. Refer also to the Additional guidance.
The pupil has responded in a non-standard way.	Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, is acceptable. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.
The pupil has made a conceptual error.	In some questions, a method mark is available provided the pupil has made a computational, rather than conceptual, error. A computational error is a slip such as writing $4 \times 6=18$ in an otherwise correct long multiplication. A conceptual error is a more serious misunderstanding of the relevant mathematics; when such an error is seen no method marks may be awarded. Examples of conceptual errors are: misunderstanding of place value, such as multiplying by 2 rather than 20 when calculating 35×27; subtracting the smaller value from the larger in calculations such as $45-26$ to give the answer 21; incorrect signs when working with negative numbers.
The pupil's accuracy is marginal according to the overlay provided.	Overlays can never be 100% accurate. However, provided the answer is within, or touches, the boundaries given, the mark(s) should be awarded.
The pupil's answer correctly follows through from earlier incorrect work.	Follow through marks may be awarded only when specifically stated in the mark scheme, but should not be allowed if the difficulty level of the question has been lowered. Either the correct response or an acceptable follow through response should be marked as correct.
There appears to be a misreading affecting the working.	This is when the pupil misreads the information given in the question and uses different information. If the original intention or difficulty level of the question is not reduced, deduct one mark only. If the original intention or difficulty level is reduced, do not award any marks for the question part.
The correct answer is in the wrong place.	Where a pupil has shown understanding of the question, the mark(s) should be given. In particular, where a word or number response is expected, a pupil may meet the requirement by annotating a graph or labelling a diagram elsewhere in the question.

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.	
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money For example: $£ 3.20 \quad £ 7$	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20(p), £ 320, £ 3,20$, 3 pounds 20, £3-20, £3 20 pence, $£ 3: 20$, £7.00 \checkmark The f sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320 p , 700p	x Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 eg $£ 3.2, £ 3200, £ 320$, £3-2-0, £7.0

Responses involving time

A time interval For example: 2 hours 30 mins

Accept \checkmark	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2 h 30 \checkmark Digital electronic time ie 2:30	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time For example: 8.40am, 17:20	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, $8-40$, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving the use of algebra For example: $2+n \quad n+2 \quad 2 n \quad \frac{n}{2} \quad n^{2}$	
Accept \checkmark	Take care ! Do not accept \times
```\checkmark Unambiguous use of a different case or variable eg }N\mathrm{ used for } x used for n```	! Unconventional notation   eg $n \times 2$ or $2 \times n$ or $n 2$   or $n+n$ for $2 n$   $n \times n$ for $n^{2}$   $n \div 2$ for $\frac{n}{2}$ or $\frac{1}{2} n$   $2+1 n$   for $2+n$   $2+0 n$ for 2   Within a question that demands simplification, do not accept as part of a final answer involving algebra. Accept within a method when awarding partial credit, or within an explanation or general working.   x Embedded values given when solving equations   eg in solving $3 x+2=32$, $3 \times 10+2=32 \text { for } x=10$   To avoid penalising the two types of error below more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.
$\checkmark$ Words used to precede or follow equations or expressions   eg $t=n+2$ tiles or tiles $=t=n+2$ for $t=n+2$	Words or units used within equations or expressions   eg $n$ tiles +2 $n \mathrm{~cm}+2$   Do not accept on their own. Ignore if accompanying an acceptable response.
$\checkmark$ Unambiguous letters used to indicate expressions eg $t=n+2$ for $n+2$	x Ambiguous letters used to indicate expressions eg $n=n+2$ for $n+2$


Responses involving coordinates For example: $(5,7)$	
Accept $\checkmark$	Do not accept $\times$
$\begin{aligned} & \checkmark \text { Unconventional notation } \\ & \text { eg }(05,07) \\ &(\text { five, seven }) \\ &(5,7) \\ &(x=5, y=7) \end{aligned}$	x Incorrect or ambiguous notation   eg $(7,5)$   $\left(\begin{array}{l}y, x \\ (7,5)\end{array}\right.$   ( $5 x, 7 y$ )   $\left(5^{x}, 7^{y}\right)$   $(x-5, y-7)$

## Responses involving negative numbers

For example: -2

Accept $\checkmark$	Do not accept $\times$
	To avoid penalising the error below   more than once within each question,   do not award the mark for the first   occurrence of the error within each   question. Where a question part   carries more than one mark, only the   final mark should be withheld.
$\times$Incorrect notation   eg 2-	

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.
For example: 0.7 or $\frac{7}{10}$ or $70 \%$

Accept $\checkmark$	Take care ! Do not accept $\times$
Equivalent decimals, fractions and percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$	The first four categories of error below should be ignored if accompanied by an acceptable response, but should not be accepted on their own. However, to avoid penalising the first three types of error below more than once within each question, do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.
$\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0   eg $\quad \frac{70}{100}=\frac{18}{25}$	! A probability that is incorrectly expressed   eg 7 in 10   7 over 10   7 out of 10   7 from 10
	! A probability expressed as a percentage without a percentage sign
	! A fraction with other than integers in the numerator and/or denominator
	! A probability expressed as a ratio eg 7:10, $7: 3,7$ to 10
	* A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers 3-5 and 4-6.
A total of 121 marks is available in each of tiers 5-7 and 6-8.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website www.qca.org.uk/ from Monday 20 June 2005. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the external marking agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.


Tier \& Question			Heating		
3-5	4-6 5-7	6-8			
2				Correct response	Additional guidance
a			1m	Indicates the correct times in the correct order eg   - 6 and 9:30	$\checkmark$ Indication of morning   eg   - 6 am and 9:30 am   ! Times not accurate   Accept $\pm 5$ minutes of the correct times eg, for 9:30 accept   - 9:25 to 9:35 inclusive   ! Use of 'half'   Accept colloquial use of 'half' or $\frac{1}{2}$ eg, for 9:30 accept   - Half (or $\frac{1}{2}$ ) 9   Do not accept an incorrect time eg, for 9:30 do not accept   - 9 half (or $\frac{1}{2}$ )   $\mathbf{x}$ Time(s) incorrect   eg   - 6 pm and 9:30   - 6 and 21:30   - 6 and 9.5
			1m	$3 \frac{1}{2}$ or equivalent	! Follow through from the first mark Accept as the time interval between their two times, provided their answer is not a whole number of hours   ! 'Half' in words Condone eg, accept   - 3 and a half
b			$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Indicates only $17(: 00)$ and 23(:00) correctly on the diagram, with no incorrect times shown   Indicates either $17(: 00)$ or $23(: 00)$ correctly on the diagram, with not more than one error or   Indicates any two times on the diagram with a difference of 6 hours	! Positions not accurate Accept provided the pupil's intention is clear   ! Arrows do not indicate 'on' or 'off' For 2 m , condone unless the times are incorrectly labelled as 'on' or 'off' In this case, mark as 1,0 For 1 m , ignore any labels






Tier \& Question						Teachers	
3-5	4-6 5	5-7\|6-8	6-8				
7					Correct response		Additional guidance
a				1m	187860		
b				1 m	1350	$x-1350$	


Tier \& Question						Membership
3-5	4-6	5-7	6-8			
8	1				Correct response	Additional guidance
a	a			1m	October	$\checkmark$ Unambiguous indication of month   eg   - O   ! Correct frequency of 32 given Ignore alongside indication of the correct month, but do not accept on its own
b	b			1 m	11	



Tier \& Question						
3-5	4-6	5-7	6-8			
10	3				Correct response	Additional guidance
a	a			1m	20	
b	b			1m	60	! Follow through Accept follow through as their (a) $\times 3$, provided their (a) was not 5
c	c			1m	4	! Operation repeated   eg $\cdot \times 4$   Condone   $\mathbf{x}$ More than one number given eg $\text { - } 2 \times 2$


Tier \& Question						Meal
3-5		5-7 6	6-8			
11	4			Correct response	Additional guidance	
			$\begin{gathered} 2 \mathrm{~m} \\ o r \\ 1 \mathrm{~m} \end{gathered}$	$£ 276$   Shows the digits 276   eg   - 2.76   or   Shows the value 23, with no evidence of an incorrect method   or   Shows or implies a complete correct method with not more than one computational or rounding error eg   - $\frac{253}{11} \times 12$   - $253 \div 11=13$ (error)   $253+13=266$   - $12 \div 11=1.09(\ldots)$,   1.09 (premature rounding) $\times 253=275.77$	$\times$ For 1 m, incorrect method eg   - $11+12=23$	



Tier \& Question						Mobile phones
3-5	4-6	5-7	6-8			
13	6				Correct response	Additional guidance
				$\begin{gathered} 1 \mathrm{~m} \\ 1 \mathrm{~m} \\ 1 \mathrm{~m} \end{gathered}$	Gives a value between 1 and 2 inclusive   Gives a value between 49.5 and 50.5 inclusive   Gives a value between 10 and 12 inclusive	! 'Million’ repeated eg, for the first mark   - $1 \frac{1}{2}$ million   - 1500000   Condone







Tier \& Question						Counters
3-5	4-6	5-7	6-8			
20	12	4			Correct response	Additional guidance
a	a	a		1 m	$\frac{1}{3}$ or equivalent probability	! Value rounded Accept 0.33 or better, or the percentage equivalents
b	b	b		1m	3	


Tier \& Question				Marking overlay available		From London
3-5	4-6	5-7	6-8			
19	13	5			Correct response	Additional guidance
a	a	a		1m	$160 \pm 2$	
b	b	b		1 m	$350 \pm 5$	
c	c	c		$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Indicates the correct position of Madrid within the tolerance as shown on the overlay   Indicates an angle of $195^{\circ} \pm 2^{\circ}$ clockwise from north, within the tolerance as shown on the overlay   or   Shows a length of $6.5 \mathrm{~cm} \pm 0.2 \mathrm{~cm}$, within the tolerance as shown on the overlay, even if it is incorrectly positioned	! For 2m, Madrid not labelled Condone provided the intended position is clear   ! For 1m, angle indicated with a short line Accept provided the angle is within the tolerance as shown on the overlay, were the line to be extended   ! For $1 m$, angle or length indicated by a point without a line joined to London Accept provided the angle or length is within the tolerance as shown on the overlay


Tier \& Question							How many?	
3-5	4-6	5-7	6-8					
21	14	6			Correct response			Additional guidance
a	a	a		1 m	Gives the correct num	of boys and girls, ie	! Numbers correct but numbers of boys and girls transposed Penalise only the first occurrence eg, for all three parts   - 9, 18   13, 15   18, 9   Mark as $0,1,1$   ! Values given as tallies   Condone provided they are grouped in fives	
b	b	b		1 m	Gives the correct number of boys and girls, ie			
					Number of boys   15	Number of girls   13		
c	c	c		1m	Gives the correct number of boys and girls, ie			
					Number of boys	Number of girls		
					... 9	18		


22	15	7		Correct response	Additional guidance
				Draws only two more lines on the grid to make a pentagon with area $14 \mathrm{~cm}^{2}$ eg	! Lines not ruled or accurate   Accept provided the pupil's intention is clear   $\times$ More than two lines drawn   eg   - Given line(s) extended


Tier \& Question						Using a calculator
3-5	4-6	5-7	6-8			
23	16	8			Correct response	Additional guidance
				1m   1m	$4410$   2.5 or equivalent	! For the second mark, answer given as an improper fraction   Accept only if fully simplified eg, accept   - $\frac{5}{2}$   eg, do not accept   - $\frac{105}{42}$


Tier \& Question				Tennis prizes
3-5 4-6	5-7 6-8	6-8		
17	91	1	Correct response	Additional guidance
			Indicates France and gives a correct justification   eg   - $1000000 \div 2.7=370370 .(\ldots)$, $780000 \div 1.54=506493 .(\ldots)$   - $\frac{1000000}{2.7}<\frac{780000}{1.54}$   - $1000000 \div 2.7 \times 1.54=570370 .(\ldots)$   - $780000 \div 1.54 \times 2.7=1367532 .(\ldots)$   Indicates France and gives a partial justification eg   - $1000000 \approx £ 400000$, $780000 \approx £ 500000$   - Australia: 370   France: 506   [values truncated with no indication of method or that original values were of the same magnitude]   or   Gives a correct justification but makes an incorrect or no decision   or   Gives a correct justification with not more than one computational or rounding error, but follows through to make their correct decision	$\checkmark$ For $2 m$, minimally acceptable justification eg   - 370370 and 506493 (or 506 494) seen   - $\frac{1000000}{2.7}, \frac{780000}{1.54}$   - $1000000 \div 270=3703 .(\ldots)$ (or 3704), $780000 \div 154=5064 .(\ldots)($ or 5065$)$   - 570 370.(...) seen   - 1367 532.(...) seen   ! Values rounded or estimated   For 2 m , accept values of $3700(00)$ and $5000(00)$ or better, 570000 or better, or 1400000 or better   Accept other estimates only if a correct method or a more accurate value is seen eg, accept   - $£ 1$ is about $2 \frac{1}{2}$ dollars, so 1000000 dollars is about $£ 400000$, $£ 1$ is about $1 \frac{1}{2}$ euros, so 780000 euros is about $£ 500000$   $\times$ For $2 m$ or 1m, justification simply repeats the decision made eg   - 1000000 Australian dollars are less than 780000 euros


Tier \& Question			Marking overlay available		Enlargement
3-5 4-6	5-7	6-8			
18	10	2		Correct response	Additional guidance
			$2 \mathrm{~m}$   or 1m	Draws the correct enlargement with vertices within the tolerances as shown on the overlay   Within an otherwise correct enlargement, the only error is that the vertices are not correctly joined   or   Their enlargement is the correct size and orientation as shown by the overlay, with vertices joined correctly, but is in the incorrect position	! Lines not ruled or accurate   Accept provided the pupil's intention is clear   ! Construction lines shown Ignore   $\times$ Enlargement is the correct size but in an incorrect orientation


Tier \& Question			Heron of Alexandria		
3-5 4-6	5-7 6-8	6-8			
19	11	3		Correct response	Additional guidance
			2m   or   1m	$\sqrt{ } 56,2 \sqrt{ } 14,7.48(\ldots)$ or 7.5 , with no evidence of an incorrect method   Shows or implies at least two of the following three correct steps   1. Shows or implies that the value of $s$ is 7   2. Substitutes correctly the values of $a, b$ and $c$ and their $s$ into the expression $s(s-a)(s-b)(s-c)$   3. Takes the square root of the correct result of their substitution   eg   - 56 seen   [step 3 omitted]   - $7(7-3)(7-5)(7-6)$   [step 3 omitted]   - $\sqrt{7 \times 4 \times 2 \times 2 \text { (error) }}=10.5(\ldots)$ or 10.6   [step 2 incorrect]   - $\sqrt{14(14-3)(14-5)(14-6)}=105 .(\ldots)$ [step 1 incorrect]   - 7.4 [correct value truncated]   or   Shows the value $51,51.3(\ldots)$ or 51.4   [the only error is to use $s$ as 11]   or   Shows the value $21,21.1(\ldots)$ or 21.2   [the only error is to take the square root of 7 before multiplying by 4 and 2]	$\checkmark$ Equivalent fractions or decimals   ! For $2 m$, answer of 7   Do not accept unless a correct method or a more accurate value is seen   $\times$ Incorrect method   eg   - $3 \times 5 \div 2=7.5$   -


Tier \& Question					Hands
3-5	5-7	6-8			
	12	4		Correct response	Additional guidance
a	a	a	1m	$\frac{7}{15}$ or equivalent probability	! Value rounded or truncated Accept $0.46(\ldots)$ or 0.47 or the percentage equivalents Do not accept 0.5 unless a correct method or a more accurate value is seen
b	b	b	1m	$\frac{1}{10}$ or equivalent probability	! Follow through   Accept follow through from an incorrect total number of pupils seen in part (a), provided their total is not 4,16 or 27   eg, from $\frac{14}{29}$ for part (a) accept   - $\frac{3}{29}$
c	c	c	1m	$\frac{2}{3}$ or equivalent probability	! Value rounded Accept $0.66(\ldots)$ or 0.67 or the percentage equivalents


Tier \& Question					Screens
3-5 4-6	5-7	6-8			
21	13	5		Correct response	Additional guidance
			1m 1m	$8$ $6$	! Values transposed but otherwise correct Mark as 0,1   ! The only error is to work with ratios that are prematurely rounded For the first value between 7.65 and 8.1 inclusive (excluding 8), and for the second value between 5.85 and 6.3 inclusive (excluding 6), mark as 0,1



Tier \& Question			Refer to the new algebra general guidance		Number
3-5 4-6	5-7	6-8			
23	15	7		Correct response	Additional guidance
				Forms or implies a correct equation eg   - $8 x-66=2 x$   - $6 y=66$   - $66 \div 6$	! Method used is trial and improvement Note that no partial credit can be given   ! Equation involving words Accept provided the operation involved in 'twice the number I was thinking of' has been interpreted eg , for 1 m accept   - Number $\times 8$ minus $66=$ number $\times 2$   - 66 is the same as 6 times the number eg, for 1 m do not accept   - $8 x-66=$ twice $x$


Tier \& Question					A level results
3-5 4-6		6-8			
24	16	8		Correct response	Additional guidance
			2m   or   1m	6300   Shows the digits 63(00)   or   Shows the value 13680 or 19980   or   Shows the digits 1368(0) and 1998(0)   or   Shows a complete correct method with not more than one computational error   eg   - $\frac{37}{100} \times 54000-\frac{19}{100} \times 72000$   - $37 \times 540-19 \times 720$	! Incorrect use of \% sign Ignore









Tier \& Question					Bracket multiplication
3-5	4-6 5-7	6-8			
	22	14		Correct response	Additional guidance
			1m   1m	Gives a correct expression without brackets eg   - $y^{2}-6 y$   Gives a correct expression without brackets eg   - $k^{2}+5 k+6$   - $k^{2}+2 k+3 k+6$	! Unconventional notation Condone eg, for the first mark accept   - $y \times y-y 6$   $\times$ Incorrect further working eg, for the first mark - $y^{2}-6 y=-5 y^{2}$







Tier \& Question						Which graph?
3-5	4-6 5	5-7 6	6-8			
			20		Correct response	Additional guidance
			a	1 m	Indicates graph D	
			b	1 m	Indicates graph C	
			c	1 m	Indicates graph B	


Tier \& Question     $3-5$ $4-6$ $5-7$ $6-8.8$		Side and angle		
	21		Correct response	Additional guidance
	a	$\begin{gathered} 2 \mathrm{~m} \\ \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	17 or $17.2(\ldots)$, with no evidence of accurate or scale drawing   Shows or implies a correct method with not more than one computational or rounding error   eg   - $28 \times \cos 52$   - $\cos 52=0.62$ (premature rounding), $28 \times 0.62=17.36$   - $28 \sin 38$   or   Shows a correct trigonometric ratio eg   - $\cos 52=\frac{w}{28}$   - $\sin 38=\frac{w}{28}$	! For $1 m$, incomplete notation that omits the angle   eg   - $\cos =\frac{w}{28}$   Do not accept unless evaluation or other indication shows that the relevance of the angle has been understood
	b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \\ o r \\ 1 \mathrm{~m} \end{gathered}$	35 or $34.9(\ldots)$, with no evidence of accurate or scale drawing   Shows or implies a complete correct method with not more than one computational or rounding error eg   - $\tan ^{-1} \frac{42}{60}$   - $\tan ^{-1} 0.7$   - Answer of 34   or   Shows a correct trigonometric ratio eg   - $\tan x=\frac{42}{60}$   - $\tan y=\frac{60}{42}$ [unmarked angle labelled as $y$ ]   or   The only error is to find the unmarked angle, ie gives an answer of 55 or $55.1(\ldots)$, with no evidence of accurate or scale drawing	$\checkmark$ For 1 m, incomplete but unambiguous notation   eg   - $\tan =\frac{42}{60}$



Tier \& Question				Two circles
3-5 4-6	5-7 6-8			
	23		Correct response	Additional guidance
	a	1m	Gives a correct explanation eg   - Since BC is a diameter of the smaller circle, any angle made by joining points $B$ and $C$ to a point on the circle's circumference must be $90^{\circ}$   - BC is a diameter (given) A is on the circumference (intersection of circles) $\therefore \angle \mathrm{BAC}=90$   - Angle BAC is an angle in a semicircle, so it must be a right angle	$\checkmark$ Minimally acceptable explanation   eg   - BC is a diameter   - Angles in a semicircle   $\mathbf{x}$ Incomplete or incorrect explanation   eg   - Angle BAC must be $90^{\circ}$   - Semicircle   - AB is a radius of the large circle, and AC is a tangent of the larger circle, so they must be at right angles
	b	$\begin{array}{\|c\|} \hline 2 \mathrm{~m} \\ \\ \hline o r \\ 1 \mathrm{~m} \end{array}$	8, with no evidence of accurate or scale drawing   Shows the value 64   or   Shows sufficient working to indicate correct application of Pythagoras' theorem   eg   - $10^{2}-6^{2}$   - $\sqrt{100-36}$   - $10 \times 10-6 \times 6$   or   States or implies that triangle ABC is an enlargement of a 3, 4, 5 right-angled triangle eg   - It's a 3, 4, 5 triangle with sides $\times 2$   or   Shows a complete correct method with not more than one computational error eg $\text { - } \begin{aligned} \mathrm{AC}^{2} & =11^{2}(\text { error })-6^{2} \\ & =85 \\ \mathrm{AC} & =9.2 \end{aligned}$	$\times$ For $1 m$, error is to square then add rather than subtract   eg   - $\mathrm{AC}^{2}=10^{2}+6^{2}$

Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				4 by 4 grid	11
2				Heating	12
3				Tickets	13
4				Unit	14
5				Paralympics	15
6				Half price	16
7				Teachers	16
8	1			Membership	16
9	2			Factor	17
10	3			Shapes on a grid	18
11	4			Meal	18
12	5			Rhombus area	19
13	6			Mobile phones	20
14	7			Arranging numbers	20
15	8			What shape?	21
17	9	1		Algebra grids	22
16	10	2		1976 v 2002	23
18	11	3		Pens	24
20	12	4		Counters	25
19	13	5		From London	25
21	14	6		How many?	26
22	15	7		Pentagon	27
23	16	8		Using a calculator	27
	17	9	1	Tennis prizes	28
	18	10	2	Enlargement	29
	19	11	3	Heron of Alexandria	30
	20	12	4	Hands	31
	21	13	5	Screens	31
	22	14	6	Spinning	32
	23	15	7	Number	32
	24	16	8	A level results	33
	25	17	9	Solutions	34
	26	18	10	Simplify	36
		19	12	Watching	37
		20	11	Milk	38
		21	13	Sequences	40


Tier			Question	Page	
$3-5$	$4-6$	$5-7$	$6-8$		
		22	14	Bracket multiplication	40
		23	15	Parallelogram	41
		24	16	Rich and poor	42
		25	17	Area	43
			18	Fir trees	44
			19	Changing shape	45
			20	Which graph?	46
			21	Side and angle	47
			22	Bowl	48
			23	Two circles	49

## NATIONAL <br> CURRICULUM <br> 5-16

GCSE

GNVQ

GCE A LEVEL

NVQ
First published in 2005
© Qualifications and Curriculum Authority 2005

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

Further teacher packs may be purchased (for any purpose other than statutory
assessment) by contacting:
QCA Orderline, PO Box 29, Norwich NR3 1GN tel: 08700 606015; fax: 08700606017
email: orderline@qca.org.uk

